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 The aim of this paper is to introduce Wittgenstein’s concept of the form of a language into geometry and to show how it can be used to achieve a better understanding of the development of geometry, from Desargues, Lobatchewsky and Beltrami to Cayley, Klein and Poincaré. Thus this essay can be seen as an attempt to rehabilitate the Picture Theory of Meaning, which Wittgenstein abandoned in his later period. Its basic idea is to use Wittgenstein’s Picture Theory to understand the pictures of geometry.

 According to Wittgenstein’s Tractatus the form of a language consists of those signs and expressions which have no real denotation. They do not denotate things, but their function is to make denotation possible. I would like to examine the iconic language of the pictures of geometry and try to find the development of its form (in the sense of Wittgenstein). But before turning to modern geometry, it is necessary to make a short detour to Renaissance painting. The iconic language of the paintings of this period will make it easier to interpret projective geometry, with which the modern developments in geometry started.

 I shall restrict myself to synthetic geometry. The development of analytic, algebraic or differential geometry could be analyzed in an analogous way. The main goal of the paper is to introduce a conceptual framework suitable for the analysis of the development of scientific language.

1. The language of the perspectivist paintings

 If we compare the paintings of the Renaissance painters with the paintings of the preceding period, we immediately notice a striking difference. Gothic paintings lack depth. The figures are placed beside one another, house beside house, hill beside hill, without any attempt to capture the depth of the space.

 In handbooks on Gothic painting, we can find the explanation for this. This kind of painting was in agreement with the general aims of the painter. The painter’s task was not to paint the world as it appeared to him. He had to paint it as it really was, to paint it as it appeared to God. The distant objects appear to us smaller, but they only appear so, in reality they are not smaller at all. So the painter must not paint them smaller.

 A quite different aim of painting was pursued by the Renaissance painters. They wanted to paint the world as they saw it, to paint it from a particular point of view, to paint it in perspective. They wanted to paint the objects in such a way that the picture would evoke in the spectator the same impression as if he was looking at the real object. Thus, it had to evoke the illusion of depth. To reach this goal the painter had to follow three principles of perspective:

Perspective of size - the remote objects are to be painted smaller

Perspective of colors - the remote objects are to be painted with dimmer colors

Perspective of outlines - the remote objects are to be painted with softer outlines

 By following these principles a special line appears on the painting - the horizon. In fact the painter is not allowed to create it by a stroke of his brush. He is not permitted to paint the horizon, which shows itself only when the picture is completed. According to proposition 2.172 of the Tractatus („A picture cannot, however, depict its pictorial form: it displays it.“), the horizon belongs to the form of the language. It corresponds to the boundary of the world pictured by the painting, and therefore, according to proposition 5.632 („The subject does not belong to the world: rather, it is a limit of the world“), the horizon belongs to the subject. So besides the signs of the iconic language which express definite objects, there are expressions on the painting connected not with the objects, but with the subject, which is the bearer of the language.

Albrecht Dürer (1471 - 1528) showed us in one of his drawings a method by which it is possible to create a perspectivist painting. I will describe Dürer’s procedure in detail, because it enables me to show what is common and what is different in perspectivist and projective picturing.
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Imagine that we want to paint some object so that its picture would evoke in the spectator exactly the same impression as if he were looking onto the original object. Let us take a perfectly transparent foil, fix it onto a frame and put it between our eye and the object we intend to paint. We are going to dab paint onto the foil, point by point in the following way: We choose some point on the object (let it for instance be brown), mix paint of exactly the same color and dab it on that point of the foil, where the ray of light coming from the brown point of the object into our eye, intersects the foil. If we have mixed the paint well, the dabbing of the paint onto the foil should not be visible. After some time spent by such dotting we create a picture of the object, which evokes exactly the same impression as the object itself. 

By a similar procedure the Renaissance painters discovered the principles of perspective. Among other things, they discovered that in order to evoke the illusion of two parallel lines, for instance two opposite sides of a ceiling, they had to draw two convergent lines. They discovered this but did not know why it was so. The answer to this, as well as many other questions, was given by projective geometry.

2. The language of projective geometry

 Gérard Desargues (1593 - 1662), the founder of projective geometry came up with an excellent idea. He replaced the object with its picture. So while the painters formulated the problem of perspective as a relation between the picture and reality, Desargues formulated it as a problem of the relation between two pictures.

Suppose that we already have a perfect perspective picture of an object, for instance of a jug; and let us imagine a painter who wants to paint the jug using our dotting procedure. At a moment when he is not paying attention, we can replace the jug by its picture. If the picture is good, the painter should not notice it, and instead of painting a picture of a jug he could start to paint a picture of a picture of the jug. Exactly this was done by Desargues, and it was the starting point of projective geometry.

[image: image2.wmf]l

l

point of

view


 The advantage brought by Desargues’ idea is that, instead of the relation between a three-dimensional object and its two-dimensional picture we have to deal with a relation between two two-dimensional pictures. After this replacement of the object by its picture, it is easy to see that our dotting procedure becomes a central projection of one picture onto the other with its center in our eye. I have mentioned all this only to make clear that the center of projection represents the point of view from which the two pictures make the same impression.

Before we start to consider the central projection of some geometrical objects, we have to clarify what happens with the whole plane on which these objects are drawn. It is not difficult to see that, with the exception of two parallel planes, the projection of a plane is not the whole plane. On the first plane (plane (  the plane from which we project) there is a line a of points for which there are no images. On the other hand, on the other plane (plane ( - the plane onto which we project), there is a line b onto which nothing is projected. 

To make the central projection a mapping, Desargues had first of all to supplement both planes with infinitely remote points. After this the line a consists of those points of the plane ( which are mapped onto the infinitely remote points of the second plane (. On the other hand, the line b consists of the images of the infinitely remote points of the plane (. So by supplementing each plane with the infinitely remote points, the central projection becomes a one-to-one mapping.




In this way Desargues created a technical tool for studying infinity. The idea is very simple. The central projection projects the infinitely remote points of the plane ( onto the line b of the plane (. So, if we wish to investigate what happens at infinity with some object, we have to draw it on the plane ( and project it onto (.

 If we draw two parallel lines on the plane (, we shall see that their images on the plane ( intersect at one point of the line b. From this we can conclude that parallel lines also intersect on the plane (. They intersect at infinity, and the point of their intersection is mapped onto that point of the line b where their images intersect.




If we draw a parabola on the plane (, we shall see that the parabola touches the infinitely remote line. This is the difference between the parabola and the hyperbola, which intersects the infinitely remote line at two points. So Desargues found for the first time a way to give to the term infinity a clear, unambiguous and verifiable meaning.

 Desargues’ replacement of reality by its picture makes it possible to study the transformations of the plane on which the objects are placed independently of the objects themselves. We could say, to study the transformations of the empty canvas. We have seen that exactly these rules of the transformation of the plane enforce the fact that the images of parallel lines are not parallel. It is not an individual property of the lines themselves but the property of the plane on which these lines are placed.

 Euclidean geometry studied triangles, circles, etc., but these object were, so to speak, situated in the void. In projective geometry the object becomes situated on the plane. Much of what happens to the objects by the projection is determined by the rules of the projection of the plane on which they are situated. We have seen this in the simplest case of the projection of two parallel lines. The point of intersection of their images is determined by the relation between the two planes ( and (. So projective geometry investigates not only the sole objects, but it also brings the background (the plane or the space) where these objects are situated, into the theory.

 In the pictures of projective geometry there is a remarkable point - different from all other points - the center of projection. As shown above, the center of projection represents in an abstract form the eye of the painter from Dürer’s drawing. Besides this point the pictures of projective geometry contain also a remarkable straight line. It is the line a, which is responsible for many of the singularities occurring by projections. The position of the line a on the plane ( is determined by the center of projection, which represents the eye of the spectator. So it is not difficult to see that the line a represents the horizon. But it is important to realize one basic difference between the horizon in a perspectivist painting and in a picture of projective geometry. In projective geometry the horizon is a straight line, which means it belongs to the language. It is not something that shows itself only when the picture is completed, as in the case of the paintings. Desargues drew the horizon, made from it an ordinary line, a sign of the iconic language.

 There is nothing like the center of projection or the horizon in Euclidean geometry. The Euclidean plane is absolutely homogeneous, all its lines are equivalent. So instead of the Euclidean looking from nowhere onto a homogeneous world, or the perspectivist watching from outside, for Desargues the point of view is explicitly incorporated into language. It is present in the form of the center of projection and of the horizon which belongs to this center.

 This incorporation of the point of view into the theory made it possible for Desargues to broaden qualitatively the concept of geometrical transformation. We cannot say that Euclid did not use transformations. In some constructions he uses rotations, translations, etc. But since he did not have the point of view incorporated into his theory, he was able to define only very few transformations. To define a transformation means to specify what changes and what remains unchanged. As the point of view was not a part of his theory, Euclid had to define his transformations in the same way for each point of view. This means that his transformations could not change the form of the geometrical object.

Desargues, having explicitly introduced the point of view in his theory, was able to define a qualitatively larger class of transformations. He could define what is changed and what remains unchanged with respect to a unique point. Exactly thus a projective transformation is defined: two figures are projectively equivalent if there exists a point from which they appear the same.

3. The language of non-Euclidean geometry

 It is an interesting historical fact that even though Girolamo Saccheri (1667-1733) and Johann Henrich Lambert (1728-1777) discovered many propositions of non-Euclidean geometry, they persisted in believing that the only possible geometry is the Euclidean one. The break through in this question started only with Carl Friedrich Gauss (1777-1855), Janos Bolyai (1802-1860) and Nikolaj Ivanovich Lobatchewsky (1793-1856), who in the first half of the 19th century came to the conviction, that besides the Euclidean geometry another geometry is also possible. Gauss first called the new geometry anti-Euclidean, then astral, and later invented the name non-Euclidean, which is used currently. The most striking point about this geometry is the fact that many of its theorems, together with their proofs, were known to Saccheri and Lambert. So it could seem, that the contribution of Gauss, Bolyai and Lobatchewsky was not a mathematical but more a psychological, consisting in a change of attitude towards the new geometry. While Saccheri and Lambert rejected it, Gauss, Bolyai and Lobatchewsky accepted it.

 But a psychological explanation is unsatisfactory from an epistemological point of view. Our task is therefore to ask what made this change of attitude possible. We have to remain inside the boundaries of mathematics itself; and instead of seeking for psychological or historical explanation, we have to try to find an epistemological reconstruction of this discovery. I think that in the case of Lobatchewsky it is possible to offer such a reconstruction, based on his derivation of the trigonometric formulas of non-Euclidean geometry.

The discovery of the trigonometric formulas played an important role for Lobatchewsky, because if it is possible to do calculations in non-Euclidean geometry, nothing could go wrong. But more importantly, this helps us to translate a psychological fact of attitude change into an epistemological fact of scientific discovery. I hope this question is interesting enough, so that you will forgive me if I now introduce some technical details from non-Euclidean geometry, which are necessary for this reconstruction.

 In non-Euclidean geometry there are two objects, which are similar to straight lines. One is the so called equidistant, which is the set of all points lying on one side of a straight line at a constant distance from it. The second is the so called limit line, which is the set of points towards which a circle passing through a fixed point A approaches when its diameter grows behind any boundary. In the Euclidean geometry both the equidistant as well as the limit line are straight lines. In the non-Euclidean geometry, on the other hand, they are not straight lines. Many of the incorrect proofs of Euclid’s fifth postulate were based on the mistake that the geometers constructed an equidistant but regarded it as a straight line. But to say that the equidistant is a straight line means in other words to accept Euclid’s fifth postulate. These propositions are equivalent. Therefore every proof of Euclid’s fifth postulate based on the assertion that the equidistant is a straight line is a circular proof.

 In a similar way one dimension higher we can form an equidistant surface to a plane and a limit surface (from a sphere passing through a fixed point A, whose diameter grows beyond any boundary). On the limit surface there are limit lines lying in a similar way to straight lines lying on the plane. Lobatchewsky discovered an interesting circumstance, namely, that on the limit surface there holds an analog to Euclid’s fifth postulate. If we choose a limit line l and a point P not lying on this line on the limit surface, then there is exactly one limit line, passing through the point P not intersecting the line l. That means that on the limit surface, for limit lines taken instead of ordinary lines, the whole Euclidean geometry holds. So does among others the cosine theorem:




 a2 = b2 + c2 - 2bc.cos( 


(1)

where a, b, c are the lengths of the sections of the limit lines forming the sides of the triangle and ( is the magnitude of the angle by the vertex A.




The formula (1) holds on the limit surface. But Lobatchewsky wanted to derive the trigonometrical formulas for triangles whose sides are sections of the straight lines of the non-Euclidean plane and not segments of limit lines. For this purpose he used the above picture. There ABC is a triangle on the non-Euclidean plane, which touches the limit surface in the point A. AB1C1 is the projection of the triangle ABC onto this limit surface. For the triangle AB1C1, since it is a triangle on the limite surface, Euclidean geometry holds.

Lobatchewsky succeeded in finding the formulas that connect the lengths of the straight line segments of the plane with the lengths of their projections on the limit surface. These formulas are:
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In these formulas there are two constants k and (. The constant k is called the radius of curvature of the non-Euclidean plane, and it plays an analogous role as the radius of the sphere in the formulas of the spherical geometry. The constant 2( is the length of the segment of the limit line, onto which the whole straight line of the plane is projected by this projection. The functions sinh(x), cosh(x), and tanh(x) are the so called hyperbolic sine, hyperbolic cosine and the hyperbolic tangent.

 With the help of these formulas it is possible to translate the cosine theorem (1) from the limit surface onto the non-Euclidean plane. We obtain:




The derivation of the cosine theorem is an important achievement, because this theorem connects the magnitudes of the angles with the lengths of the segments. Therefore it plays a central role in the whole trigonometry.

 But how did Lobatchewsky derive this formula? First he embedded into the non-Euclidean space a fragment of Euclidean geometry (in the form of the limit surface), and then he transmitted the geometrical relations from this fragment onto the non-Euclidean plane. So this picture represents a junction of two languages. These two languages are separated from each other; they are on different backgrounds. One language, the Euclidean, is situated on the limit surface. The other, the non-Euclidean is situated on the plane. The formulas (P) establish the translation between these two languages.

I think that the structure of this picture goes beyond the possibilities of the language of projective geometry. It represents a qualitative shift in the structure of the iconic language. In Desargues both the object and its image in the projection are placed on equal, Euclidean, backgrounds. So the whole projection takes place in one language, the Euclidean. In Lobatchewsky, on the contrary, the objects are non-Euclidean (the triangle ABC) and the images are Euclidean (the triangle AB1C1). So the projection has the character of a translation between two different languages. The formulas (P) are neither formulas of Euclidean geometry, nor formulas of non-Euclidean geometry. They belong to the metatheory, connecting these two geometries. This is something qualitatively new.

 But besides this change of the background there is another, maybe even more striking change brought about by Lobatchewsky. How was it possible to draw these pictures? The line AC1, the one which is drawn on the picture, cannot be a segment of any limit line. It is drawn on ordinary Euclidean „paper“, and there does not exist anything like a limit line on this paper.

 In order to be able to understand this picture, we have to know that we must not take literally what we are looking at. Sure, we are looking onto an ordinary network of lines of the Euclidean plane, and on the Euclidean plane there is nothing like a limit line. But the situation in many respects resembles that of Renaissance painting. The painting, strictly speaking, does not have any depth as well, but nevertheless it is able to evoke depth. By the interpretation of the perspectivist painting we have explained this ability to evoke depth as the introduction of the external perspectivist subject in the form of the point of view, which we have to take up, in order to see what we have to see. From this point of view we see looking at two straight lines which obviously converge and intersect, two parallel sides of a ceiling.

I think that with Lobatchewsky we are dealing with something similar, namely with the external interpretative subject. This does not have the form of a point of view. It is rather an interpretative distance, which consists in the ability, for instance, to see a non-Euclidean triangle, which, strictly speaking, is impossible to draw, beyond the triangle ABC, which is in the picture present in the form of an ordinary Euclidean triangle. The interpretative subject becomes part of the language in the sense that in the drawing of the picture it is taken into consideration. Anyone unable to take up this interpretative standpoint cannot understand the pictorial language. But it is external, because it is implicit, nobody is able to say what exactly Lobatchewsky wants from us.

 The pictures of Lobatchewsky are thus based on two subjects. One of them, the internal, is an ordinary Desarguean center of projection, from which the two triangles ABC and AB1C1 make exactly the same impression, so this is the subject that constitutes the correspondence of the object and its image. The other, the external, is the interpretative subject, which constitutes the interpretative distance. The basic problem of the pictures of Lobatchewsky is that the internal subject is non-Euclidean, while the external subject is Euclidean. So in the pictures there is a conflict between forms of languages. The language that he uses is Euclidean, but what he wants to express is non-Euclidean. 

4. The language of the Beltrami’s model

 The consistency of non-Euclidean geometry was proven in 1868, twelve years after Lobatchewsky’s death, by Eugenio Beltrami (1835 - 1900), who constructed its first model. A simplified version of this model was suggested by Felix Klein (1849 - 1925) in 1871, and I would like to discuss it briefly. But before we turn to the interpretation of Beltrami’s model, we must return to the picture which was used in the derivation of the trigonometrical formulas by Lobatchewsky. There we drew only a small sector of the limit surface in the form of the triangle AB1C1. Let us now draw a greater part of this surface as well as of the plane. We can see that the plane is pictured not onto the whole limit surface, but only onto part of it in the form of a circle. The parameter s in the formulas (P) is the diameter of this circle.




The limit surface is in fact a sphere of non-Euclidean geometry, whose center is infinitely remote. The projection from the limit surface onto the plane, used by Lobatchewsky, happens from this infinitely remote center. In the interpretation of Desargues we have mentioned that the center of projection represents the point of view. So we can say that Lobatchewsky used an improper internal subject. In addition he also had an external interpretative subject.




Beltrami came with an original idea, which in many respects resembles Desargues; namely he stuck the picture onto the original. The central problem of Lobatchewsky was that in his pictures he had a conflict of grammars. Beltrami removed this conflict when he identified the external interpretative subject with the internal projective subject. In other words, he looked at the above picture from the improper center of projection. What did he see? We know that the center of projection is that point from which the image and the original make exactly the same impression. That means that from this point the limit surface (more exactly those parts of it onto which the whole plane is projected) and the non-Euclidean plane look exactly the same. The triangles ABC and AB1C1 blend.

It could seem that, by this identification of the picture and the original, the information gets completely lost. Lobatchewsky’s transition of the trigonometric formulas from the limit surface onto the plane was based exactly on the fact that these objects were different, and so they could correspond to one another.

But here Beltrami had recourse to the interpretative subject. The difference between the original and the picture, which he identified physically, was transferred onto the shoulders of the interpretative subject. In a manner similar to Desargues when he turned the external perspectivist subject of the Renaissance paintings into the internal subject of the projective geometry having the form of the center of projection, Beltrami internalized the interpretative subject of Lobatchewsky. He turned the implicit requirements of Lobatchewsky, which required one to see behind Euclidean lines non-Euclidean objects, into explicit rules. So the interpretation becomes expressible within the language. This is analogous to the change made by Desargues, who turned the horizon into an ordinary line. For the painters the horizon was not an expression of their iconic language, they were not allowed to paint it. It just appeared when the painting was nearly finished. Similarly, Desargues changed the external perspectivist subject of the painters, which was an implicit requirement of seeing two parallel lines behind the convergent lines of the painting, into a single point within the picture, the center of projection. In both cases something implicit, belonging only to the understanding of language, became expressible explicitly in the language. The interpretation gets the form of a dictionary:

 
EXTERNAL LANGUAGE 

INTERNAL LANGUAGE

K  
a circle on the Euclidean plane 

the horizon of the non-Euclidean plane

A
a point inside the circle 


a point on the plane

B
a point outside the circle


?????

a
a chord of the circle 


a straight line

p1
a chord not intersecting the chord a

a parallel to the straight line a
 But let us come back to Beltrami. When he looked onto the picture of Lobatchewsky from the improper center of projection, as already mentioned, the Euclidean objects on the limit surface blended with the non-Euclidean objects of the plane (for instance the triangles ABC and AB1C1 appear exactly the same). But that means, that it is possible to draw them!!! Lobatchewsky’s conflict of grammars is overcome. We can draw everything „in a Euclidean way“ and interpret it „in non-Euclidean terms“. This is the advantage of the fact that the interpretative subject is directly present within the language. The interpretation, which for Lobatchewsky was an implicit understanding of what the author wanted to express, has instead the character of explicit naming. I can draw a Euclidean object and interpret it by definition as the non-Euclidean object with which it is identified in the projection. So this explicit incorporation of the interpretation in the language makes it possible to draw the non-Euclidean plane. We in fact draw the circle of the limit surface which, as Lobatchewsky discovered, is Euclidean. The non-Euclidean plane is projected onto this circle, and thus from the center of projection they make exactly the same impression. This makes it possible to name the geometrical objects inside of this circle after those non-Euclidean objects with which these Euclidean - and therefore drawable - objects blend. That is why I call the interpretative subject „internal“, because the naming, which is normally something implicit, based on showing, happens here explicitly, in the language.

 What is a model? The Beltrami-Klein model is based on a simple picture, in which a circle with some of its chords is represented.




The points inside the circle (the circle excluding the circular line) represent the whole non-Euclidean plane, and the chords (excluding their endpoints) represent its straight lines. In this model all the axioms of Euclidean geometry are satisfied. Through any two different points of this plane there passes exactly one straight line, etc.- all axioms with the exception of the axiom of parallels. If we choose any straight line, for instance a, and any point which does not lie on this line, for instance A, through this point we can thus draw two straight lines (p1 and p2) which do not intersect the line a.

 I think that this picture is a qualitatively new way of representation. It is new in comparison to Lobatchewsky’s, because there is no conflict of grammars in it. It is also new compared to with Desargues’. In Desargues each object was situated on one single background. Beltrami, by sticking the picture onto the original, gives to each object two backgrounds.

 In his model Beltrami takes a common Euclidean plane; and on this plane he first represents the non-Euclidean background in the form of a circle, which represents the horizon of a non-Euclidean plane; and then on this non-Euclidean background he represents the objects. So the object gets two frames; it is situated onto two backgrounds simultaneously. On the one hand, it is situated on the external background of the Euclidean plane, on which it is a chord of the circle. But on the other hand the same object is situated also on the internal background, where it acts as a straight line of the non-Euclidean plane. This double coordination of the objects made it possible to prove the consistency of non-Euclidean geometry.

 If non-Euclidean geometry was inconsistent, it would contain some theorem about the points and straight lines of the non-Euclidean plane that could be proven together with its negation. Beltrami’s model makes it possible to translate this non-Euclidean theorem into the language of Euclidean geometry that would state the same things, not about points and lines of the non-Euclidean plane, but about the points and chords of the Euclidean circle K. It is not difficult to see that this translation transforms proofs into proofs, and so we would get a theorem of Euclidean geometry, that also could be proven together with its negation. So if non-Euclidean geometry was inconsistent, Euclidean would be as well.

5. The language of Cayley’s relativisation of the metric

 Although Beltrami’s model definitely removed all doubts concerning the consistency of non-Euclidean geometry, nevertheless this is a model of non-Euclidean geometry within Euclidean geometry. This means that these geometries do not have equal status. On the contrary, Euclidean geometry is the presumption of the possibility of the non-Euclidean geometry. First a Euclidean plane must be given, in order to draw on it the circle K and to make a model of the non-Euclidean plane inside this circle. This means that Euclidean geometry is the transcendental presumption, in the sense of Kant, of non-Euclidean geometry.

 It is obvious, that this aspect of the Euclidean model renders a wide space for the defense of Kant’s philosophy of geometry, and this must have caused delight to every neo-Kantian. It is really very probable, that if Kant (1724-1804) would have lived long enough to have learned about the existence of the non-Euclidean geometry, he would have been easily able to adapt his system to this fact. Indeed, in the Beltramian model Euclidean geometry is the transcendental presumption of the non-Euclidean, and so its a-priori character is not violated. Thus Euclidean geometry can preserve its status of a-priori form of spatial intuition. We have only to add to this function, formulated by Kant, a new one. Euclidean geometry is also the a-priory form of constructions of non-Euclidean models. On the other hand it is also obvious that this inequality of the status of Euclidean and non-Euclidean geometries in the Beltramian model has its origin more in our physical constitution than in the nature of these geometries. So the primacy of the Euclidean geometry, which lies at the basis of Beltrami’s model, is more a weakness than a strength of this model.

 The English mathematician Arthur Cayley (1821-1895) had the idea to look at Euclidean geometry from the position of non-Euclidean, that is, to reverse the order in which they enter into the construction of Beltrami’s model. He wanted to stop seeing of Euclidean geometry as something given, as something binding, and try to see it also as a model. But how? The basic idea of Cayley emerged when he examined the problem of how to introduce the concept of distance into the Beltrami’s model. Let us imagine small beings, for which the interior of the circle K is their whole world. How would they measure distances? Our usual metric is not suitable, because in it the distance from a point inside the circle K to its circumference is finite, but for our beings this distance would be infinite, because the circumference of the circle is the horizon of their world, and as in any world the horizon is infinitely remote. So the usual concept of distance is unsatisfactory.

 Cayley suggested to look at this circle from the standpoint of projective geometry. The points A and B, in which the line XY intersects the circumference of the circle K, do not belong to the world of our small beings (for them these points are infinitely remote), but for us they are readily available. Here the interpretation leaves the object language of the model and resorts to the metalanguage. If we are looking for the concept of distance between points X and Y, we have four points available (in the metalanguage), namely X, Y, A and B. And four points define an projective invariant magnitude, which was already discovered by Desargues, namely the double proportion:

 (A, B; X, Y) = 


For the sake of brevity I omit the historical details and present only the resultant formula, which expresses the distance between points X and Y in the model as:

 d(X,Y) = (ln(A, B; X, Y)(  

It is not difficult to see that when the point X approaches the point A, the double proportion converges to zero, its logarithm drops to minus infinity, and so in absolute magnitude we get the value we need. As the point X ap​proaches the horizon, its distance from the point Y grows beyond any bound. Of course, this formula is not in the lan​guage of our small beings. They do not understand what the point A is. But this is not important. The whole Beltramian model is formulated in the external language. What is im​portant is that the distance is formulated with the use of a projective invariant, namely the double proportion.

 The suggestion of Cayley was to look at the whole of Beltrami’s model and not only at his metric from the standpoint of the projective geometry. Let us forget that Beltrami’s model is constructed on a Euclidean plane and imagine that it is constructed on a projective plane. What is a projective plane? It is what Desargues made from the Euclidean plane. So let us forget the parallels, the distances and the angles. What remains is a snarl of lines which intersect each other. Now onto this „clean“ plane we draw the circle K. This circle intersects every straight line at two points, and with the help of these points we introduce the concept of the distance, just as above. So the circle introduces non-Euclidean geometry. Besides this the circle divides the straight lines into three groups - those which intersect inside the circle, those which intersect onto its circumference, and those which intersect outside the circle. Those of first kind are secants, the second are parallels, and the third is a special kind of lines, which Lobatchewsky called divergents. So we see that besides the concept of distance, the circle can also be used to introduce the concept of parallels and the other kinds of relationships between straight lines. Also the concept of angles can be introduced using only the circle K.

So the circle K is that object, which induces the non-Euclidean structure onto the projective plane. Instead of Beltrami’s construction
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in which the model of the non-Euclidean geometry was based on the Euclidean plane, Cayley suggested a different scheme

 E  ((( P   ((( L.

The first arrow indicates the transition from a Euclidean plane to a projective plane and it consists in disregard​ing its Euclidean structure, that is, disregarding the Euclidean concepts of parallels, distances and magnitudes of angles. The second arrow indicates the shift from a projective plane to a non-Euclidean plane, and it consists in the introduction of the non-Euclidean structure, that is, introducing the non-Euclidean concepts of parallels, dis​tances and magnitudes of angles. This second step is based on the circle K, which Cayley has called the absolute.

 So Cayley comprehended the role that the circle K played in the Beltrami’s model. It constitutes the non-Euclidean structure of the model’s geometry. So he was able to formulate a fundamentally new question, namely the question: What constitutes the Euclidean-ness of the Euclidean plane? In the framework of Beltrami’s model it was not possible to ask this question. If we take the Euclidean plane as something given, then the question of how we can introduce Euclidean geometry onto this plane is meaningless. The transition
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is impossible to describe. What constitutes a language is inexpressible in this language. In Cayley’s framework raises the same question very naturally, namely what constitutes the Euclidean-ness of the Euclidean plane. It asks what geometrical object should replace Beltrami’s circle K in order to get the scheme
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that is, in order to get Euclidean geometry again in the projective plane. The answer to this question is striking. The absolute of a Euclidean plane is degenerate: it consists of two imaginary points (i.e. points with complex coordinates) lying on a real line (i.e. a line whose equation has real coefficients). So what constitutes our world are two imaginary points. Isn’t that strange? Doesn’t it remind one of two other points, by which our life is determined in time, namely birth and death? In addition let us remark, that in the theory of relativity the time coordinate is also imaginary. Is this merely chance? And most of all, the absolute does not determine Euclidean geometry completely. It is necessary to add additional conditions.

 But let us stop speculating and return to epistemology. We have seen that Cayley brought a qualitatively deeper insight into the structure of Euclidean geometry. He was able to find what constitutes its Euclidean structure. In Cayley geometry definitively abandons the scope of Kantian philosophy, and a neo-Kantian reinterpretation of Cayley’s theory is not even conceivable. But what made this fundamentally new insight possible? We have seen that it was a seemingly small shift, namely the transition from the Euclidean to the projective plane as the basis of the model. But how did Cayley accomplish this transition? By an appeal! He did not change anything in Beltrami’s picture, rather he just asked us to forget that it is drawn on the Euclidean plane and instead to see the whole picture as drawn on the projective plane. That means, we must forget the parallels, the distances and the magnitudes of angles. But who can do this? Nobody, I think. It seems that we cannot see except by using a Euclidean framework.

 So here we are dealing with an appeal, similar to that on which the whole of perspectivist painting is based - in that case, to see two parallel sides of a ceiling behind the two intersecting lines of the painting. The appeal of Lobatchewsky is analogous, asking us to see behind the lines of a Euclidean plane the objects of non-Euclidean geometry. In a way similar to Dürer or Lobatchewsky, Cayley is also asking us to abandon what we are looking at, namely a Euclidean plane, and see instead the projective plane. Thus we can interpret this appeal just as we did in the other two cases, namely as the introduction of a new kind of external subject into the language. It is external, because the transition from the Euclidean plane to the projective plane is not explicitly described; Cayley does not tell us what we have to do in order to see the projective structure. He only requires an implicit understanding of what would happen if we were able to see the plane without the parallels, distances and magnitudes of angles. Of course, strictly speaking, we are unable to see this way, but we understand what he wants to tell us. If we are willing to follow him, we are then able to understand the fundamental question of what constitutes the Euclidean structure of Euclidean geometry just as depth was revealed within the Renaissance painting and just as we got an insight into the non-Euclidean world through the pictures of Lobatchewsky. In this way Euclidean geometry stops being something given, something a-priori, and we can question its fundamental nature.

I would like to call the external subject introduced by Cayley the „integrative subject“, because it makes it possible to integrate Euclidean and non-Euclidean geometry into one system. From this point of view we see the common foundation of the projective plane, from which both Euclidean and non-Euclidean geometries emerge in a uniform way, with the help of the curve called the absolute by Cayley. In this framework Euclidean geometry is no longer a presumption of the possibility of non-Euclidean geometry. They both are absolutely equal; they both arise in the same way. The circumstance that Euclidean geometry had a prior position in our world is only a question of physics and cognitive science, but not of geometry. From Cayley on, Euclidean and non-Euclidean geometries are equivalent from a geometrical point of view.

 Cayley’s transition to the projective plane as the base of geometry makes it possible to go further to an even more radical question
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What geometries are possible? This is a matter of taking different curves in the role of the absolute, and then finding out what kind of geometry is created on the projective plane. This is a basically new question, namely the question: What is geometry? Cayley formulated this question, but the answer to it was given by Felix Klein.

6. The language of Klein’s Erlangean programm

 Let us consider an analogous situation from mathematical logic. The question which other logical connectives besides implication, conjunction and disjunction are possible could be answered when the logical connectives were identified with Boolean functions. It is not difficult to see, that there are 16 of such connectives:

p q
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

1 1
1
1
1
1
0
1
1
1
0
0
0
1
0
0
0
0

1 0
1
1
1
0
1
1
0
0
1
1
0
0
1
0
0
0

0 1
1
1
0
1
1
0
1
0
1
0
1
0
0
1
0
0

0 0
1
0
1
1
1
0
0
1
0
1
1
0
0
0
1
0

It is easy to recognize the second function as disjunction, and the fourth as implication.

 The analogical question about geometries was formulated by Cayley. Which geometries are possible? And Felix Klein found the identification which made it possible to answer this question. In Cayley’s framework the question meant: Which curves taken as the absolute give rise to a geometry? Cayley understood that the rule of the circle in Beltrami’s model constitutes the concept of distance, and so he thought that all possible geometries could be found by examining different curves. But we have seen that this approach is unsuitable to analyze even Euclidean geo​metry. The absolute is in this case degenerate and for this reason it does not create any metric. So, for the degenerate cases, and the most interesting cases are degenerate, we need another approach. In addition, there are too many curves, many more than there could be geometries.

 Klein found a way out. The circle in Beltrami’s model has an additional property which Cayley did not notice. In the group of all projective transformations the circle defines a subgroup of those transformations, which transform the circle onto itself. By identifying geo​metries with the subgroups of the projective group, Klein found a tool which made it possible to give an answer to Cayley’s question. Not every curve is suitable for an absolute. The absolute can only be a curve such that it defines a subgroup within the projective group.

 Thus Klein did the same thing with Cayley’s integrative subject that Beltrami had done with Lobatchewsky’s interpretative subject, and Desargues with the perspect​ivist subject of the Renaissance painters: namely, he incor​porated Cayley’s subject into the language. The transforma​tion group is exactly the tool that makes it possible to replace the appeal of Cayley to „forget the parallels, distances and angles“, by an explicit instruction, „from the Euclidean group transit to the projective one“. That is because the projective group is exactly that group which „destroys“ the parallelness, the distances and the angles, leaving only the intersections and the double proportion.

 Let us now come to a short epistemological analysis of Klein’s Erlangen program, which was formulated in 1872 and opened an unifying view onto the whole of geometry using methods of the theory of groups. Our task is to explain why exactly the theory of groups was so successful in geometry. At first sight Klein’s approach seems to be that he has taken a concept from algebra and brought it into geometry. So, why exactly this concept? Could he have taken another? Would it lead to different development of geometry?

What we need is an epistemological interpretation of the concept of group itself. The key to this lies in the understanding of why it was necessary to wait for the theory of groups until the 19th century. The answer to this question we already know. In Greek mathematics the concept of transformation was too narrow and only in projective geometry this concept became wide enough to make it possible to study the transformations themselves.

 But what made it possible for Desargues to change the concept of transformations so radically? We already have the answer. It was the incorporation of the point of view into the language of geometry. Somewhere here we should search the starting point for the epistemological reconstruction of the concept of group. And really, the reconstruction we need can be found in the book La Science et l’Hypothése by Henri Poincaré (1854-1912).

 In his book Poincaré investigates the relation between geometrical space and the spaces of our sensory perceptions. At first sight it could seem that these two spaces are identical. But this is not the case. Geometrical space is continuous, infinite, homogeneous, isotropic and three-dimensional. Poincaré shows that the space of our visual perceptions is neither homogeneous, nor isotropic nor three-dimensional. That means that we can not derive the concept of geometrical space from our visual perceptions alone. With the other sensory perceptions the situation is similar.

 That means that we can not derive the concept of geometrical space from the space of any one isolated sensory organ. It is important to realize that, for the birth of geometrical vision, visual impressions are not enough. The tactile and motor perceptions are necessary as well. So the concept of geometrical space is from the very beginning connected with our body; and so, trying to derive it from the visual perceptions alone, as often done in phenomenology or empiricism, is an epistemological error.

Poincaré asserts that we have derived the concept of geometrical space from the relations in which the changes of different kinds of perceptions (visual, tactile and motor) follow each other. The most important among these relations are the relations of compensation. We can compensate changes in the visual field by motion of our body or eyes. Poincaré showed that these compensations have the structure of a group, and that this group is the group of transformations of Euclidean space. So Euclidean space is neither the space of our sight, nor the space of our touch, nor the space in which we are moving. The Euclidean space is the structure in which these three sensorial spaces are integrated together.

 This analysis shows that the concept of group is something deeply concerned with ourselves. The Euclidean group is the tool with the help of which each of us transcends the private world of his or her sensory perceptions. And in this way the concept of the group forms the ground on which the intersubjective language of spatial relations is based. That means that the theory of groups, which is the theory making possible the transition from the series of impressions of isolated sensory organs to the invariants of the structure of their compensatory relations, is in a fundamental way present not only in the concept of space, but also in the concept of the object, reality,...

 Given this analysis, it is not surprising that Felix Klein could very effectively use the concept of group in geometry, and that, with the help of the theory of groups, geometry reached a qualitatively higher level of abstraction. It is not surprising because the concept of group forms the foundation on which is constituted the concept of space. So Klein did not introduce an algebraic concept into geometry, rather he only made this concept explicit, which from the very beginnings lays implicit within the foundations of geometry. So we can say that Klein’s Erlangen program was successful in bringing a unifying view to geometry, because the concept of group, on which this program is based, forms the epistemological foundation of the concept of space.

 Now let us return to Poincaré’s analysis of the concept of space. Poincaré speaks about compensatory relations between perceptions. But what does it mean to compensate? To compensate means to attain a sameness between the original and the new perceptions. But that is familiar to us, isn’t it? Let us recall Dürer. He also wanted two perceptions to be the same. The agreement is always an agreement from a specific point of view. We have characterized the point of view as that point from which the picture and the original make exactly the same impression. So also in the case of compensation we are dealing with some point of view, a point of view from which the perceptions before and after the compensation are the same.

 But this point of view, which constitutes the group of compensatory relations and which forms the basis of Klein’s approach to geometry, does not have the form of a point, as it did in the case of Desargues. For Desargues it was enough to introduce a single point into geometrical language. Nor has it the form of two viewpoints, the external and the internal, as it did in the case of Beltrami. For Beltrami it was therefore enough to add a dictionary, which made it possible to translate theorems from external into internal language and vice versa. In the Klein’s case viewpoints fill the whole space. Euclidean space can be seen as the space of viewpoints. It is not the space of the seen. As Poincaré has shown, the Euclidean space is not the space where the things at which we are looking are situated. It is the space of seeing. It is the space of the possible viewpoints from which we are looking at the world.

7. The language of Riemann’s analysis situs

Poincaré’s reconstruction of the Erlangen programme can cause some discontent. In comparison with Euclidean or Lobachevsky’s geometry, in which the concept of distance was the property of the space, we acquired a deeper understanding of geometry. The metrical structure ceases being something given a-priori, something unchangeable. It becomes a structure, which is introduced into the ‘neutral’ projective space with the help of a transformation group. Nevertheless, this reconstruction still presumes the a-priori givennes of some geometrical object, namely of the projective plane. So the question arises whether we can overcome also this givenness, whether it is possible also to transform the projective plane, which in the Erlangen programme represents the a-priori presupposition of every metrical geometry, into an a-posteriori construction. So the question is, whether we can make with the projective plane a shift analogous, to that which Cayley did with the Euclidean plane of Beltrami’s model. The answer to this question is positive. It is possible to make geometry free from the assumption of the a-priori givenness of the projective plane. Nevertheless the way in which it can be done is much more radical than was Cayley’s transition from the Euclidean to the projective plane. Here we are not going to some more fundamental kind of plane as a basis of geometry, in which the projective plane would be only one of the possible defined structures. The step made by Bernard Riemann consisted in giving up any kind of plane. His idea was to stop conceiving points, lines or planes as objects given in some space - projective or any other. Riemann’s aim was to get rid of space completely.

Riemann realised the necessity to free the geometrical objects from space in the course of his work in the theory of complex functions. A function of complex variable is a function, which prescribes to a point z of the complex plane Z a value w = f(z) which is a point w of the complex plane W. The basic difficulty with such functions is that it is impossible to draw a graphical representation of them. The problem is that the domain and the range are both two-dimensional (complex planes) and thus the graph of a function of complex variables, analogous to the sinusoid or logarithmic curve, would require a four-dimensional space. This is clearly beyond the limits of geometrical representation. However in the case when the function of complex variables is one to one, i.e. to any two different values z1 and z2 there correspond two different values w1 = f(z1) and w2 = f(z2), it is possible to make a relatively clear picture about its behaviour. We can draw two copies of complex plane one beside other (of course, we are drawing only parts of them) and mark, which regions of the plane Z are mapped onto which regions of the plane W. Nevertheless this approach is very limited. Even such simple functions as the power function w = zn, the exponential function w = ez or the trigonometric functions w = cos(z) and w = sin(z) are not one to one.

Riemann found an original way, how they can be made one to one. It is enough to imagine that these functions are defined not on an ordinary complex plane, but on a more complicated object, which we get by pasting several copies of complex planes together. Let us take for instance the function w = z2. This function is not one to one because it maps one half of the complex plane Z onto the whole plane W. Thus the image of the whole plane Z covers the plane W twice. (For instance the points z1 = i and z = -i are mapped onto the same point w = -1.) Nevertheless this double covering of the plane W is very regular. It is just if two pictures were glued one on the other without any interfering or intermingling. And Riemann’s idea was to separate them. For this reason instead of one plane W on which the picture is depicted twice, we have to take two copies W1 and W2 of the plane W. On one of them we depict the upper half-plane of the plane Z (by which we shall cover this plane completely) and on the other we depict the lower half-plane of the plane Z. In this way we got rid from the overlapping of the two images. Our construction has nevertheless one fault. The image of the plane Z in the transformation w = z2 should be ‘one piece’. If the point z moves along a curve on the plane Z, its image w moves on the corresponding curve of the plane W. In contrary to this our model consists from ‘two pieces’. So every time when the point z passes from the upper half of the plane Z to its lower half, the point w ‘jumps’ from the plane W1 onto W2. It is clear, that ‘in reality’ there is no such jumping. It is merely an artefact of our model. We are confronted with jumps only because we divided what was originally unified.

Riemann find a way how we can overcome this jumping. It is necessary to paste the two planes W1 and W2 together. (Of course not to paste them one onto the other - this is from where we started - but first to cut them and then paste them together along this cutting.) The boundary B which separates on the plane Z the upper half-plane from the lower one is the line, by the crossing of which the ‘jumping’ from the plane W1 onto W2 occurs. The line B is mapped onto the positive halves of the real axes of the planes W1 and W2 . So let us cut the planes W1 and W2 along these positive halves of their real axes and paste them together in such a way that no jumps will occur.


         W1
         W2 

We will find out that we need to paste the upper edge of the cut of the plane W1  to the lover edge of the cut of the plane W2 and the lower edge of the cut of the plane W1 to the upper edge of the cut of the plane  W2. After some trials we find that it is not possible. But why is it not possible? Because the space does not allow it. And here comes Riemann with a radical idea: Let us forget about the space! Let us imagine that the pasting is done. The function w = z2 becomes in this way a one to one mapping of the complex plane Z onto the ‘double-plane’ W1W2 (which is an example of what we today call a Riemann surface). An analogous construction as we did for the function w = z2 it is possible to do also for the other mentioned elementary functions of complex variable. In this way we acquire a geometrical insight into the course of these functions, which among others makes it possible to determine the values of many integrals without actual integration. We can guess the values of these integrals from the geometrical properties of the integral paths on the Riemann surface.

We presented Riemann’s construction in its original context, which was the theory of functions of complex variables, because here emerged for the first time the idea to consider a geometrical object independently of any space. These original constructions were in some extent complicated by the circumstance, that we had to paste together many copies of the complex plane (which is an infinitely large object).  Nevertheless we can show the basic steps of Riemann’s construction on a much ‘simpler’ object, on the so called Klein’s bottle.
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     Cylindrical surface





     Möbius strip

Let us take a square and we are going to do what Riemann did with the complex planes, namely to paste together its edges. By every such pasting we have to determine, which two edges are we going to paste together and in which orientation. We will indicate with letters the corresponding edges and with arrows the orientation. If we paste two opposite sides, which are agreeingly oriented,  we get the surface of a cylinder. If we paste two opposite sides of the square but one of them we twist 180 degrees, we get the well known Möbius strip. Both these pastings are easy to perform in our three dimensional space, though perhaps for the construction of the Möbius strip it is better to take a longer strip of paper or a piece of cloth, rather than a square. But these are only technical details of secondary importance as the objects, at which we are aiming, will be impossible to construct, even with paper or cloth of any conceivable quality. The next object, which it is easy to construct is the torus.
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Let us now imagine a square, which differs from that defining the torus only that we have changed the orientation of one of the edges A2 to the opposite.
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          Klein’s bottle







We see, that in this case it is impossible to paste the corresponding circles together, because their orientation does not fit. We would need to twist one of them, as we did it with one edge of the square in the construction of the Möbius strip. In the case of the Möbius strip we were lucky. The object before the last (and in fact the only) pasting was planar and thus we had the third dimension of the space on our disposal, which we used for the twisting of one edge of the cut. In this way we obtained the correct orientation of the edges and so could paste them together. In the case of the Klein’s bottle we are in a worse position. The cylindrical surface, the one edge of which we have to twist, is a three-dimensional object, so we have no further free dimension on our disposal, into which we could ‘lean out’ and make the necessary twist. But it is also clear that this is our problem, a problem of our three dimensional space in which we want to do our construction. The Klein’s bottle itself has nothing to do with this. Whether we can or cannot construct it in our three dimensional space is not a property of the object but of our space. Therefore the diagram consisting of a square (or more generally of a polygon with even number of edges), on which it is indicated, which edges and in what orientation should be pasted together, we can consider as a new geometrical language, which makes it possible to represent the particular objects independently of the space.
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Möbius strip    +    Möbius strip       =
         ??????????? 
   =    
     Klein’s bottle

The basic advantage of this new language consists in the fact, that it makes it possible to describe in a uniform way the surfaces which can be represented in our three-dimensional space and those which cannot. In this new language we can show many interesting connections among surfaces, and this also in spite of the fact, that we are not able to imagine or represent the particular surfaces in our space. For instance, if we take the Möbius strip, we see, that its edge is a circle. So let us take two copies of the Möbius strip and paste them together along these circles. Of course, we are unable to do this pasting. But neglecting this ‘detail’, we can show, that what we would get by this pasting, if we could perform it, is nothing other than Klein’s bottle.Thus we have found a relation between two objects, which we can not realise. Is this not nice? We see that Riemann’s language, despite its apparent simplicity, is a powerful tool. 

Another example of a surface, which it is not possible to construct in the 3-dimensional space is the projective plane. We obtain it if we paste to a Möbius strip along its side (a circular line) a circle.
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Möbius strip         +          circle
 
     =
    
       projective plane

Again, we are unable to fulfil this pasting, because R3 is to small and it is impossible to paste the particular circular lines (the edge of the Möbius strip and the edge of the circle) together. 

‘Consider the problem faced by a 2-dimensional person living in R2 who wants to form a closed surface from D2 by pasting another disk D to D2 along their common boundary. He would be unable to do this in R2 but a 3-dimensional person in R3 could do it by making D into a ‘cap’. The point of this story has been made before: We should think of space more intrinsically and not as being imbedded in some special way in a particular Euclidean space.’ (Agoston 1976, p 60). But who can do this? I think that we have here to do again with an implicit appeal, which is similar to Lobachevsky or Cayley. The only difference is, that this time we are not required to see beneath a Euclidean triangle a non-Euclidean object, or beneath a Euclidean plane a projective one. Now we have to get rid of the space. From our previous experience with such appeals  we know, that we have to do with a new form of language, based on a new kind of epistemic subject. Our task is to clarify what kind of subject it is. So let us return to the picture representing the projective plane.

The reader found it perhaps a bit strange, that in the construction of the projective plane I was speaking about pasting of the Möbius strip to a circle, but I draw a square. But from the topological point of view the circle and the square are indiscernible objects, or more strictly speaking they are the same object. Topology considers two object being equivalent (the technical term is homeomorphic) if we can get one from the other by a continuous deformation. It is easy to see, that by appropriate deformation of the sides of the square we can get a circle. This aspect of topology shows, that topology is a language, in which transformation groups are already incorporated. Topology, exactly in the spirit of Klein, studies the invariants of a particular group of transformations. The only difference is that it is not a subgroup of the projective group, as it was in the case of the Erlangen programme, but it is the group of homeomorphisms. The principle is nevertheless the same. The topological properties are defined as invariants of homeomorphisms. So it is clear, that topology is based, from the very beginning, on Klein’s integrative subject.

Riemann’s language nevertheless contains something principially new - cutting and pasting. These operations lie beyond the boundaries of the Erlangen programme. If we were by chance to cut the projective plane, we would destroy the projective group and so the whole structure of Klein’s language as well. This means that cutting and pasting are more radical operations than the geometrical transformations. If we consider a square or a circle (from the topological point of view they are the same), then to the inside of this circle there corresponds a group of transformations. If we paste the two opposite sides of the square together and construct in this way a cylindrical surface, we change the transformation group. The new group will contain, besides the transformations of the circle also the transformations corresponding to the rotations of the cylindrical surface round its axes. If we create from the cylindrical surface the torus, we again enrich the transformation group. So if we consider small creatures living on the cylindrical surface or on a torus, if they would formulate some day something analogous to the Erlangen programme for their world, as a basis for it they should take not the group of the projective plane, as Klein did, but the group of transformation of the cylinder or of the torus.

What I want to say is that each of these surfaces has its own geometry, corresponding to the particular transformation group. The Riemannian cutting and pasting crosses these geometries and makes it possible to pass from one of them to another. Riemann’s language describes the constitutive acts with the help of which we can create the surfaces, on which the whole Kleinian apparatus of transformation groups works. Therefore the epistemic subject, which forms the basis of Riemann’s language is the external constitutive subject. It is external because Riemann is not able to tell us, what exactly we have to do in order to get rid of the three-dimensional space and to see Klein’s bottle or projective plane. And it is constitutive because it takes over the role, which geometry until Riemann had assigned to space. Riemann has found how we can, in a technical way, grasp this constitutive function. In this respect he resembles Cayley and his grasping of the metrical structure of the Euclidean plane. In both cases something, which was given, which represented the a-priori characteristics of the space, is replaced by an a-posteriori structure. 

8. The language of Poincaré’s combinatorial topology

The basic problem of Riemann’s language was the implicit nature of its form. On the one side it relies on geometrical intuition (for instance we have to see, that by pasting together the sides A1 and A2 we really get a torus), but on the other side it requires us to abandon a considerable part of this intuition (namely its dependence on three-dimensional space). The way out from this dilemma, which in many respects resembles Klein’s solution of the similar dilemma of Cayley, was found by Henri Poincaré. It is the well known combinatorial topology, which brought an incorporation of the external constitutive subject in an explicit way into the language. In a similar way to our proceeding in the case of the Beltrami’s model, here also we will not follow in detail the historical development. I will not present the Poincaré’s original version of combinatorial topology, but rather its simplified version, developed by Brouwer. But for the sake of simplicity I will not distinguish between them and will speak of Poincaré,  where I should really speak about Brouwer.
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If we want to represent the projective plane, we will not mention any pasting (which we are unable to fulfil), and also we will not require from the reader to forget about  space (which he is unable to do). Let us take a picture of Riemann’s language and divide it into triangles. It may seem that we were too generous in this triangulation and have chosen too many triangles. But the aim is to make sure, that no two segments, which correspond to different edges, have the same labels. 

It is obvious, that the internal hexagon (v4 v5 v6 v7 v8 v9 ) represents a circle, while the external belt represents a Möbius strip, and thus the whole object is a projective plane. Now we define a k-dimensional simplicial complex (see Agoston 1976, p.32):

Definition 1: Let k(0. A k-dimensional simplex is the convex hull ( of k+1 linearly independent points v0, v1, ..., vk ( Rn. We write ( = v0 v1...vk. The points vi are called the vertices of (.
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The point v0 is a 0-dimensional simplex, the segment v0v1 is a 1-dimensional simplex and the triangle v0v1v2 is a 2-dimensional simplex. Thus the simplexes represent the most simple objects of the particular dimension.

Definition 2: Let ( = v0 v1...vk be a k-dimensional simplex and let {w0, w1, ..., wl } be a nonempty subset of {v0, v1, ..., vk}, where wi ( wj if i ( j. Then ( = w0w1...wl is called an l-dimensional face of ( and we write ( ( (.
Thus the simplexes v0 and v1 are 0-dimensional faces and the v0v1 is a 1-dimensional face of the simplex v0v1. The simplex v0v1 has no other faces. The simplex v0v1v2 has three 0-dimensional, three 1-dimensional and one 2-dimensional face. 

Definition 3: A simplicial complex K, is a finite collection of simplices in some Rn satisfying:

1. If ( ( K, then all faces of ( belong to K

2. If (,( ( K, then either ( (( = (  or ( (( is a common face of ( and (.
For instance the sphere (i.e. the surface of a ball), which from the topological point of view is an object equivalent to the surface of the tetrahedron, we can represent as the following simplicial complex:
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KS = {v0v1v2, v0v1v3, v0v2v3, v1v2v3, v0v1, v0v2, v0v3, v1v2, v1v3, v2v3, v0, v1, v2, v3} 

Similarly for the projective plane we get the following complex

KP = {v1v6v3, v2v3v6, v2v6v5, v1v2v5, v1v5v4, v7v0v6, v1v9v3, v3v9v8, v2v3v8, v1v2v8, v1v8v7, v1v7v6, v1v4v3, v6v0v5, v5v0v4, v0v9v4, v8v9v0, v7v8v0, v1v2, v1v3, v1v4, v1v5, v1v6, v1v7, v1v8, v1v9, v2v3, v2v5, v2v6, v2v8, v3v6, v3v8, v3v9, v4v5, v4v9, v4v0, v5v6, v5v0, v6v7, v6v0, v7v8, v7v0, v8v9, v8v0, v9v0, v1, v2, v3, v4, v5, v6, v7, v8, v9, v0}

Now we can forget about Riemann’s picture of the projective plane. The simplicial complex KP represents the projective plane without any reference to pasting. The edge v1v2 in the triangles v1v2v5 and v1v2v8 is simply the same edge. In the picture it is present twice, once at the right lower corner and the second time at the left upper corner. But this is the problem of the picture. It is impossible to draw the projective plane without cutting it and thus the edges which form the cut, will be in the picture two times. On the other hand the simplicial complex represents the particular surface without any reference to some cutting or pasting. Thus in the complex every vertex, edge and face of the projective plane is present only once (as it is listed only once in the definition of KP).

In this way we have got rid of the picture. But we have not get rid  of the space. This is because until now we have defined only the so called concrete simplicial complex, that is a complex which ‘dwells’ in some space Rn (see definition 1). Our next step is thus to separate the language of the simplicial complexes from reference to any space. We reach it so that we deprive the above listed system of symbols (such as KP) of their geometrical interpretation. For this reason we define the so called abstract simplicial complex, which will be just a system of symbols. The symbols, which we presented in the case of the sphere (KS) or the projective plane (KP) contain everything what is important about the sphere or the projective plane. All topological properties such as the simple connectedness, dimension or Euler characteristic can be calculated using only the symbols, i.e. without any reference to a picture or space. 

The basic achievement of Poincaré was the development of formal techniques and calculation procedures, which only on the basis of the abstract simplicial complexes make it possible to determine the basic topological invariants of a surface. Without any reference to a picture or space, using only symbols he managed to compute the Betti numbers (which determine connectedness, dimension, Euler characteristic and many other topological invariants). Every surface is constituted by the way in which the triangles of its triangulation are connected. We need no other information in order to determine the topological invariants, and exactly this information is expressed in the abstract simplicial complex. Thus we can say, that Poincaré succeeded in incorporating Riemann’s constitutive acts into the language. Instead of pasting the edges of a square in our imagination (as the real pasting it is usually impossible to fulfil, it remains our task to pretend that we know what would come out  in such pasting) we make the particular triangulation, in which the pasting is already fulfilled (or, more precisely, there is nothing to paste, because nothing was cut). The language of combinatorial topology, and the topology in general, is thus based on the internal constitutive subject. It is the language, by which mathematics liberated itself from dependence on space. It makes it possible to speak about objects independently of whether it is or it is not possible to represent them in our three-dimensional space. The simplicial complex of the projective plane does not differ in any fundamental way from the complex, which corresponds to the sphere. The fact, that it is not possible to realise it in our space is, from the topological point of view, only of secondary importance.

At the end of this section I would like to show, that the second branch of  topology - general topology - has the same form of language based on the same epistemic subject. The topological space - the basic notion of general topology - is some set together with a structure called a topology. The topology can be given in different ways - with the help of open sets (this is the most usual way), closed sets, basis or a filter. This is not important. The important thing by introducing a topology into a set is the fact, that the structure of closeness, i.e. the determination of which points are close, is being expressed in an explicit way in the language.  Until the emergence of general topology closeness was a property belonging to space. This means, that two points were considered to be close  depending on how they were placed in space. In general topology the relation of being close is getting free from space. In a similar way to combinatorial topology also in general topology space stops being the constitutive basis of the language. Closeness ceases to be a property constituted by space (which only ‘lent’ it to points) and it becomes a property which is constituted in an explicit way in the language. The constitutive role, which was formerly played by space is taken over by the language. So the concept of the topological space is from the epistemological point of view closely related to the concepts of combinatorial topology, introduced by Poincaré.

9. The language of Cantor’s naive set theory

One of the most important discoveries of Georg Cantor was the realisation of the fact, that it is possible to present all constitutive acts in a uniform way as grasping of a particular system of objects as one whole. This is true not only about the language of general topology, which was the field in which Cantor originally worked, but in general. A simplicial complex is nothing else than grasping the particular simplexes into one complex. If we realise, that this is the basic function of language - to name (i.e. to separate) a particular system of things as one whole - we can say, that set theory is from the epistemological point of view a new form of language, based on the linguistic subject.

In Cantor this subject is only external, because on the one hand Cantor wanted it to be possible to consider any system of objects as a set, but on the other hand he knew, that the system of all sets, the system of all ordinals, etc. are systems of objects which we cannot consider as sets, because it would lead to paradoxes. Cantor ‘solved’ this problem by limitation of size of the systems, which we can consider as sets. Sets are all ‘not too large systems’. But what does it mean ‘not too large’ he was not able to tell. So his requirement is only an implicit appeal, and we know already, that such appeals indicate the emergence of a new implicit form of language.

10. The language of Zermelo’s axiomatic set theory

The way out from this unpleasant situation was found by Ernest Zermelo. It consisted, as in the other similar cases, in the explicit incorporation of the subject into the language. Zermelo’s idea is in many respects similar to Wittgenstein’s idea from the Tractatus. We can avoid the paradoxical sets by creating a language, in which it will be impossible to express them. On the one hand if we chose thoroughly the ‘alphabet’ of our language and if we admit only such expression forming rules, which lead to small sets (i.e. from meaningful expressions they generate again meaningful expressions) then in this language no paradoxes can occur. We displace them outside of the language. On the other hand, Zermelo constructed this formal language in such a way, that it is possible to express in the language all the operations we need to do with sets (such as intersection, union or power). So only the paradoxical sets (such as the set of all sets, set of all ordinals, etc.) become inexpressible. Thus while in Cantor the distinction between the meaningful expressions (defining ‘small sets’) and the meaningless expressions (leading to ‘big sets’) was based only on an implicit understanding, in Zermelo this distinction if explicitly incorporated in the language.

As often happens in the history of mathematics, the transition to the linguistic subject and the incorporation of this subject in the language, which we have discussed in connection with Cantor and Zermelo, was carried out in a parallel way also by other mathematicians. First of all we have to mention Frege, Dedekind and Peano, as the mathematicians, who independently of Cantor discovered the new form of language, based on the implicit linguistic subject. It is interesting, that they all had a fate analogous to Cantor - their theories were exposed to similar paradoxes. This fact is also an indication, that the form of their languages was the same, because a paradox is an epistemological property of the language. The next generation of mathematicians, like Bertrand Russell or David Hilbert, adopted a similar strategy in order to avoid the paradoxes in the systems of their predecessors, namely to make the form of the language explicit and in this way to displace the paradoxes outside of the language.

Let us stop for a while at Peano. Comparing Poincaré’s and Peano’s approach to arithmetic we can see clearly the transition from the constitutive acts to the linguistic subject. Henri Poincaré in his book Science and Hypothesis interpreted mathematical induction as a constitutive act. In his view, in a proof by mathematical induction we must see the fact, that from P(0) and ((n)[P(n) ( P(n+1)] it really follows that ((n)P(n). That means, that the truth of the universal proposition, which is to be proven, is constituted by arithmetical intuition. That is why Poincaré claims that higher arithmetic (i.e. arithmetic based on induction) has a character of synthetic a-priori. It is based on constitutive acts, which make it possible to pass from finite experience to universal statements. This transition it is clearly impossible to make either purely logically (in an analytic way) or empirically and thus it must relay on some synthetic a-priori basis.

Peano came up with an idea which is in many respects similar to Cantor’s realisation that all constitutive acts are linguistic in nature (they consist in the discrimination of a system of objects as a whole). Peano replaced the synthetic principle of induction by a scheme of axioms. He included among the axioms of arithmetic the following scheme:

{P(0) ( ((n)[P(n) ( P(n+1)]}  (  ((n)P(n)

While Poincaré based the constitution of the system of natural numbers on arithmetical intuition Peano bases it on language. If we wish to prove some general arithmetical theorem, we need not have recourse to any intuition. We just use the induction scheme, which we have at our disposal among the axioms. Nevertheless Peano’s linguistic subject is external - he did not specify the predicate P in his axiom, and thus his system is exposed to Russell’s paradox in very much the same way, as Cantor’s theory was. The solution was similar to Zermelo - it consisted in the specification of the formal language, the expressions of which are to be only allowed to be substituted for P in the induction scheme.

We included this short detour into arithmetic only to avoid the false impression, that the linguistic subject has some internal connection with set theory. The linguistic subject belongs to the form of language of set theory, but we are free to use the same form of language also in other areas, as for instance arithmetic. The circumstance, that set theory is the most widespread theory with this form of language does not mean, that it is the only theory with this form.

Poincaré considered the language to be only something secondary. Language according to him is only a tool, with the help of which we communicate what we have discovered guided by our intuition. The language does not create or constitute the truth, it serves only to its communication. On the other side Peano uses the linguistic subject - the intuitions which we are unable to express in the language don’t belong to mathematics. In a similar way as for the philosophers before Wittgenstein language was only a tool with the help of which they communicated their philosophical systems. The systems themselves did not rely on language, but on intuition. In Wittgenstein the language takes over the function of constituting the worldpicture. The world and its structure are not given a-priori, in an extralinguistic intuition. They are constituted by the language. The boundaries of the language become the boundaries of the world.

11. The development of the epistemic subject  of geometry

 Following the development of synthetic geometry we have seen a succession of changes leading from Euclidean geometry to Klein’s Erlangen program. In order to characterize the essence of these changes, we could say that they were changes of the epistemic subject which constitutes the iconic language of geometry. We have found the following succession of iconic languages:


the language of Renaissance painters

 


based on the external perspectivist subject


the language of projective geometry

 


based on the internal perspectivist subject

the language of Lobatchewsky’s non-Euclidean geometry




based on the external interpretative subject


the language of Beltrami’s model




based on the internal interpretative subject


Cayley’s language




based on the external integrative subject


the language of Klein’s Erlangen program

 


based on the internal integrative subject

the language of Riemanns’s analysis situs




based on the external constitutive subject


the language of Poincaré’s combinatorial topology




based on the internal constitutive subject

the language of Cantor’s naive st theory




based on the external linguistic subject


the language of Zermelo’s axiomatic set theory




based on the internal linguistic subject

This succession is not accidental. It consists of changes which link up one to the other. Desargues, for instance, incorporated the subject of the iconic language of Renaissance painters in an explicit form of the center of projection into the language of the projective geometry. In this way he created the internal perspectivist subject. Lobatchewsky, in his transition of the trigonometric formulas from the limit surface, already used this internal subject, but, as the whole picture was undrawable within Euclidean geometry, he was forced to introduce a second, external interpretative subject. Beltrami incorporated this external interpretative subject in the form of explicit rules of translation between the external and the internal languages. In this way he created the internal interpretative subject. Cayley disconnected the two languages, between which the translation took place and put the projective plane in between them. But to do this, he needed an additional structure of the language, based on a new kind of subject, namely the integrative subject. But this subject was for Cayley only external, and Klein found the way to incorporate it into the language and to create the internal integrative subject.

 We see, that in this development richer and richer structures of subjectivity are build into the language. First the subject in the form of the point of view, which is the basis of the subjectiveness of the personal view. Then the subject in the form of interpretation, which is the basis of the subjectiveness of meaning. And in the end the subject in the form of integration of all possible points of view, which is the basis of the subjectiveness of the possibilities of transcendence. We cannot deny that all these levels are parts of our own subjectivity. Everyone has his personal point of view, his own interpretation of reality and his unique potentiality of possibilities. So it is clear that we ourselves are the source from which geometry has taken the basic structures for its languages. In this development, deeper and deeper structures of our subjectivity were incorporated into the language.

12. Wittgenstein’s picture theory of meaning and epistemology

The attentive reader might have noticed, that even if our reconstruction of the development of geometry was inspired by the philosophy of the early Wittgenstein, already in the second chapter (about projective geometry), we have abandoned the frame laid down in the Tractatus by expressing the form of language explicitly in the language. In his Tractatus Wittgenstein pursued the philosophical aim of discrediting metaphysics as mass of empty meaningless sentences. For this purpose he introduced his concept of the form of language. The form of a language is a structure different from its logical and its grammatical structure as well. The point here is, that the sentences of metaphysics are from the logical and grammatical point of view correct. They are correctly formed sentences of the German language and usually a logician could also nothing object. According to Wittgenstein their problem is not that they are wrong, but that they are empty, meaningless, they say nothing. And to reveal this emptiness of metaphysics we need a transcription of its sentences into a correct form of language.

Nevertheless for the success of discrediting of metaphysics it is essential that there is only one form of language. Everything which could not be translated into it would be once and for all discarded as empty gibberish. If there were more than one form of language, a metaphysician, whom we have discredited using one of these forms, could escape to another, or he could say, that sometimes in the future there will be discovered a new form of language, which will fully vindicate his metaphysics. Thus if we want effectively discredit metaphysics, we have to maintain the thesis that there is only one form of language.

The philosophy of early Wittgenstein relies thus on two principles. The first is the thesis, that beside logic and grammar there is a further structure of language, independent of the first two, which he called the form of language. The second is the thesis, that there is only one form of language. This second principle seemed plausible, because in ordinary language we have also only one grammar and only one logic. Later Wittgenstein abandoned the radical position of his early writings and developed the theory of language games. Nevertheless I think that this total renouncing of the Tractatus was premature. It is possible, that the picture theory of meaning is too restrictive, if we want to use it in order to understand ordinary languages (such as English, German or French). But as we have shown, it can be very productive for the interpretation of the language of science. What we have to do is just to liberate the picture theory from the thesis of the existence of unique form of language.

That means, that our aim is to introduce plurality into the picture theory itself, and not give up the picture theory for the sake of plurality, as did Wittgenstein in his later period. Thus what I presented in this paper can be seen as an intermediate position between the early and the late Wittgenstein. It is not probable, that Wittgenstein did at any time of his development hold this position. This paper is not an attempt to reconstruct the historical Wittgenstein. I want rather to describe a moderate position, which he, because of his delight in radical views, would probably never have held. Nevertheless I think that it is an interesting philosophical position, worthy of development. It is based on two basic principles:

1. The existence of the form of language as a structure independent from logic and grammar, and

2. The plurality of the forms of language - the language at every stage of its development has only one form, but this form can vary in time.
The concept of the form of language has one basic advantage - it can clearly distinguish the explicit (what can be said in the language) from the implicit (what can be only shown). If we allow a plurality of the forms of language, it can be possible to express explicitly the form of language in the language itself. This is exactly what was done by Desargues, Beltrami, Klein, Poincaré, and Zermelo with the form of the language of Lorenzetti, Lobathevsky, Cayley, Riemann, and Cantor respectively. But this incorporation of the form of language J1 (which is in the language present only in an implicit way) explicitly in the language opens the possibility of the emergence of a new (implicit) form of language J2. In this way the tension between the implicit and the explicit side of the language is the basis for its evolution. Thus if we liberate the picture theory from the thesis of the existence of only one form of language, we get a tool which makes it possible to describe the evolution of theories. The evolution consists in two alternating processes - the explicit incorporation of the form of language which was at the previous stage only implicit, and the emergence of a new implicit form on the place of the previous one which was made explicit. As this is a medium position between Wittgenstein 1 and Wittgenstein 2, I suggest we call this new position Wittgenstein 

.

I hope that the above exposition has convincingly shown the effectiveness of the concept of the form of language for epistemology. The usefulness of the concept of the form of language for epistemology is based on two circumstances. Firstly this concept is closely related to the notion of subject and therefore it makes it possible to reconstruct cognitive processes such as heuristics, discovery, interpretation, translation and understanding without a necessity to introduce a subject in the form of an idealised scientist or scientific community. We need not to introduce a subject from outside (from sociology as Kuhn did, or from psychology as Piaget does), because the subject is already present in the form of language. That means that we are not forced to mix our epistemological considerations with sociological, psychological or historical elements. And secondly the form of language (the nature of the horizon, background, subject, etc.) is clearly separated from logic (the principle of the excluded middle, the principle of twovalueness, etc.). This liberates our approach from dialectics.

Dialectics (in its explicit form, as we encounter it in Hegel or Marxism, as well as in its implicit form, as it is present in the work of Lakatos or Popper) has a tendency to interpret the evolution of concepts, or knowledge in general, as a process which is logical in nature. It is not by chance that Hegel called dialectics as a science of logic and it is not by chance that Popper speaks about the logic of scientific discovery. According to dialecticians the knowledge is logical in nature. A necessary consequence of this is, that evolution of knowledge comes into conflict with logic.

In the beginning of the 19th century, when Hegel formulated his theory, a critical attitude towards logic was justified. At those times logic was in principle identical with Aristotelian logic, which was insufficient for the purposes of contemporary mathematics and rational discourse as well. Boole, Frege and Peano half a century later came with a radical innovation in logic - the so called formal logic - which went far beyond the Aristotelian framework. Thus with a bit of good will we can consider Hegel’s dialectic as a justified attempt to reform logic. After the emergence of modern formal logic nevertheless the situation changed drastically. Frege found a way to correct all the faults of the Aristotelian system (its unsatisfactory way of quantification and too narrow subject/predicate theory of propositions) and after his successors freed Frege’s original system from inconsistency, logic developed  into a powerful tool of analysis. Thus further persistence on the dialectical positions lost its rational justification.

Both solutions of the dialectician’s conflict between logic and evolution of knowledge are unsatisfactory. Philosophers who are following Hegel in the attempt to replace classical logic by some new dialectical one were unable to offer anything comparable to the successive formal logic, and thus their research programme degenerated. On the other side dialecticians like Popper or Lakatos, who were not prepared to sacrifice logic, and thought that logical consistency is crucial to rational discourse, were forced to give up evolution. The fact, that Lakatos was unable to reconstruct any deeper conceptual change in history of mathematics or physics is not accidental. As a dialectician, he conceives evolution to be in conflict with logic, but as Poppers disciple he is not prepared to give up logic. Thus he omits some of the most interesting moments in the history of mathematics. If he had tried to reconstruct them, he would have been forced to violate logic. Therefore he reconstructs only those changes, in which relatively small conceptual changes occur.

Nevertheless, if we interpret the evolution of concepts as development of the form of language, then the whole logic remains untouched in the course of the evolution. What is evolving, is not logic, not even the separate concepts, but rather the whole conceptual framework, in which they are incorporated. Thus the theory of Wittgenstein 

 makes it possible to describe the evolution of concepts without any logical inconsistency. What is changing in the course of development is the structure of the epistemic subject of language, the horizon, background. Logic remains the same. On the other side we have here to do with a real development of the basic concepts of geometry as space, straight line, point or angle, because the old form of language is on every stage incorporated in the new one. Therefore there is a considerable continuity along the line Desargues, Lobachevsky, Beltrami, Cayley, Klein, Riemann, Poincaré, Cantor and Zermelo. What any of them did was not an invention of some new concepts but rather a deepening of our understanding of the fundamental concepts of geometry. And as we have already mentioned, we consider understanding to be a fundamental category of epistemology.

Epistemology based on the concept of the form of language represents thus a passable way between two extremes. The one extreme is dialectical logic (of Hegel and Marxism), which for the sake of evolution sacrifices logic. The other extreme is logical dialectic (of Popper or Lakatos), which for the sake of logic sacrifices evolution. If we consider evolution as development of the form of language, we can develop epistemology as a exact discipline, free of any dialectical inconsistencies and in spite of this able to grasp the most fundamental conceptual changes in the history of mathematics and science. Thus we are intended to do for epistemology, what Boole, Frege and Peano did for logic, namely to develop what we call formal epistemology - a discipline parallel to formal logic. Formal epistemology differs from logic, as it is connected with the epistemic subject. But in a similar way to Frege, who developed his predicate calculus from logical analysis of arithmetic, our departure is an analogous epistemological analysis of geometry.

The development of formal epistemology represents a research programme, whose first step is the present reconstruction of the development of synthetic geometry. The natural further step will be an analogous reconstruction of the development of analytic, algebraic and differential geometry. I hope that this will make it possible to make more precise the basic components of the form of language, as horizon, background or subject (which are in the present paper bound to geometrical vision) and connect these concepts with symbolic languages of algebra and calculus. The next step then will be an epistemological reconstruction of the development of further branches of mathematics (algebra, arithmetic, differential and integral calculus) as well as physics (mechanics, relativity theory and quantum mechanics). From these reconstructions, I hope, a coherent theory of formal epistemology will emerge. 
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